野外取水 英文文章
详细内容
野外取水英文文章(一)
野外取水英文文章(二)Earth-ScienceReviews127(2013)171–
192
ContentslistsavailableatScienceDirect
Earth-ScienceReviews
journalhomepage:
Faultzonehydrogeology
V.F.Bensea,⁎,T.Gleesonb,S.E.Lovelessa,O.Bourc,J.Scibekd
a
SchoolofEnvironmentalSciences,UniversityofEastAnglia,NorwichNR47TJ,England,UnitedKingdomCivilEngineering,McGillUniversity,Montréal,QCH3A2K6Canadac
GéosciencesRennes,UMR6118RS,UniversitédeRennes1,CampusdeBeaulieu,35042Rennes,Franced
SRKConsultingInc.,22ndFloor,1066WestHastingsStreet,Vancouver,BCV6E3X2,Canada
b
articleinfoabstract
Deformationalongfaultsintheshallowcrust(b1km)introducespermeabilityheterogeneityandanisotropy,whichhasanimportantimpactonprocessessuchasregionalgroundwaterflow,hydrocarbonmigration,andhy-drothermalfluidcirculation.Faultzoneshavethecapacitytobehydraulionduitsconnectingshallowanddeepgeologicalenvironments,butsimultaneouslythefaultcoresofmanyfaultsoftenformeffectivebarrierstoflow.Thedirectevaluationoftheimpactoffaultstofluidflowpatternsremainsachallengeandrequiresamultidisci-plinaryresearcheffortofstructuralgeologistsandhydrogeologists.However,wefindthatthesedisciplinesoftenusedifferentmethodswithlittleinteractionbetweenthem.Inthisreview,wedocumentthecurrentmulti-disciplinaryunderstandingoffaultzonehydrogeology.Wediscusssurface-andsubsurfaceobservationsfromdi-verserocktypesfromunlithifiedandlithifiedclasticsedimentsthroughtocarbonate,crystalline,andvolcanicrocks.Foreachrocktype,weevaluategeologicaldeformationmechanisms,hydrogeologicobservationsandcon-ceptualmodelsoffaultzonehydrogeology.Outcropobservationsindicatethatfaultzonesmonlyhaveaper-meabilitystructuresuggestingtheyshouldactasplexconduit–barriersystemsinwhichalong-faultflowisencouragedandacross-faultflowisimpeded.Hydrogeologicalobservationsoffaultzonesreportedinthelitera-tureshowabroadqualitativeagreementwithoutcrop-basedconceptualmodelsoffaultzonehydrogeology.Nevertheless,thespecificimpactofaparticularfaultpermeabilitystructureonfaultzonehydrogeologycanonlybeassessedwhenthehydrogeologicalcontextofthefaultzoneisconsideredandnotfromoutcropobservationsalone.Togainamoreintegrated,prehensiveunderstandingoffaultzonehydrogeology,weforeseenumeroussynergisticopportunitiesandchallengesforthedisciplineofstructuralgeologyandhydrogeologytoco-evolveandaddressremainingchallengesbyco-locatingstudyareas,sharingapproachesandfusingdata,developingconceptualmodelsfromhydrogeologicdata,numericalmodeling,andtraininginterdisciplinaryscientists.
CrownCopyright©2013PublishedbyElsevierB.V.Allrightsreserved.
Articlehistory:
Received6September2011Aepted27September2013Availableonline10October2013Keywords:FaultzoneHydrogeologyStructuralgeology
Contents1.2.3.
Introduction.................................................Approachestofaultzonehydrogeology.....................................Faultzoneprocessesfromsurface-focusedstudies................................3.1.Terminologyandfaultzonearchitecture.................................3.2.Impactoffaultzoneprocessesonpermeability..............................
3.2.1.Faultzoneprocessesthatenhancepermeability.........................3.2.2.Faultzoneprocessesthatreducepermeability..........................3.2.3.Interacting,secondaryorlarger-scaleprocessesthateitherreduceorenhancefaultzonepermeability.
Conceptualgeologicalmodelsoffaultzonehydrogeology.............................4.1.Unlithified-andlithifiedsiliciclasticrock.................................4.2.Crystallinerock............................................4.3.Volcanicrock.............................................4.4.Carbonaterock............................................Hydrogeologicalevidenceoftheimpactoffaultsonfluidflow...........................5.1.Unlithified-andlithifiedsiliciclasticrock.................................5.2.Crystallineandvolcanicrock......................................5.3.Carbonaterock............................................
.
............................................................................................................................................................................................................................
172172173173175175176179180182182182182183183184185
4.
5.
author.
E-mailaddress:v.bense@uea.ac.uk(V.F.Bense).
0012-8252/$–seefrontmatter.CrownCopyright©2013PublishedbyElsevierB.V.Allrightsreserved.
172V.F.Benseetal./Earth-ScienceReviews127(2013)171–192
6.7.
Modelingfluidflowinfaultzones........Towardsinterdisciplinaryfaultzonehydrogeology7.1.Controlsonfluidflowaroundfaultzones.7.2.Thetaleoftwodisciplines........7.3.Thefuturetaleofoneinter-discipline?..Acknowledgments.................References................................................................................................................................................................................................................................................................................................................................................185186186187187188188
1.Introduction
Astheplumbingoftheearth,faultzonesintheshallowcrust(b1km)impactasuiteofgeologicalprocesses.Faultsaffectfluidflowpatternsingroundwateraquifers(e.g.,Levensetal.,1994;Mayeretal.,2007;Benseetal.,2008;Burbey,2008;FolchandMas-Pla,2008),andhydrocarbonmigrationandentrapmentinreservoirrocks(e.g.,Aydin,2000;SorkhabiandTsuji,2005)aswellasthesafestorageofnuclearwaste(Bredehoeft,1997;Douglasetal.,2000;Mal'kovskiiandPek,2001;Ofoegbouetal.,2001),andCO2sequestration(e.g.,Shiptoal.,2004;Agostaetal.,2008;DockrillandShipton,2010;Kampmaal.,2012;Tueckmanteletal.,2012b).Fluidexpulsionandlocalizedmineralizationalongfaultscanleadtotheformationofeco-nomicmineraldeposits(e.g.,Deming,1992;Garveal.,1999;Persoal.,2008),andprovidesevidenceofenhancedpastfluidcircu-lationalongfaultsbothonEarth(e.g.,MozleyandGoodwin,1995;Heynekampetal.,1999;CaineandMinor,2009;Balsamoetal.,2013)andonMars(Treiman,2008).Mineralizationassociatedwithfluidflowandwater–rockinteractioncanimpactthemechanicalstrengthoffaults,potentiallyaffectingthecharacteroffaultslipinresponsetoearthquakesinthedeepercrust(e.g.,MooreandRymer,2007;Carpenteretal.,2011).Thespecificimpactoffaultsongroundwaterflowindifferentgeologicalenvironmentsisplex,diverseandoftennotwellunderstooddespitetherelevanceofunderstandingfluidflowaroundfaultzonesatshallowcrustaldepthswhichisimportanttonumeroussocietalconcerns.
Thefundamentallawoffluidflowthroughporousmedia,Darcy'sLaw,indicatesthatsubsurfacefluidflowiscontrolledbyabinationofrockpermeabilityandthehydraulicgradientwithintherockmass.Examiningdeformationprocessesaswellastheinternalstructureandarchitectureoffaultzonestructureusingtoolsfromstructuralgeologyiscriticaltoobtainaprimaryunderstandingofthepermeabilitystruc-tureoffaultzones.However,hydraulicgradientsaroundfaultzonesarestronglycontrolledbyhydrogeologicprocessessuchasratesofgroundwaterrechargeforcingtopography-drivenflow,anthropogenicinfluencessuchasextractionofgroundwater,anddeeperprocesseslikefluidflowdrivenbysedimentpaction.Hence,examininghy-draulicgradientspresentnearfaultzonesanddelineationoffluidflowpathsinfaultzonesusingtoolsfromhydrogeologyshouldalsobecen-tralinadevelopmentofaprehensiveunderstandingoftheroleoffaultzonesinhydrogeology(Karasakietal.,2008).Thoughthereisaconsiderablebodyofresearchonfaultsandfluidflowinbothhydroge-ologyandstructuralgeologydisciplines,thereislimitedevidenceofanexchangeofinsightsorintegrationbetweenthem.
Wefocusonfaultprocessesandsingle-phasegroundwaterflowpat-ternsintheshallowcrustafterfaultdeformation.Atgreaterdepthsfrac-turedrockswillcontainpredominantlysalinegroundwatersand/orhydrocarbonaumulationsanddensity-dependentandmulti-phaseflowisbeyondthescopeofthisreview.Atgreaterdepths,seismogenicdeformationandotherdeformationmechanismsbeyondourscopearealsomoreimportant.Althoughwedonotdiscusstheimpactoffaultsonflowinhydrocarbonreservoirsinmuchdetail,inSection5weincludehydrocarbonreservoirmodelswhichinmanycasescouldbedirectlytransferabletoshallowsingle-phasegroundwatersystems.Byfocusingevolutiononfluidflowinactivefaultzones.Forsimplicity,inthispaperweusethetermrockforbothlithifiedandunlithifiedmaterials.Inthecontextoffaultzonehydrogeologyweconsiderafaultzoobethevolumeofrockwherepermeabilityhasbeenalteredbyfault-relateddeformation.Theprotolithistheundeformedgeologicalmateri-alsurroundingthefaultzone.
Ourobjectiveinthispaperistopropelresearchonfaultzonehydro-geologyforwardbyprovidingaprehensiveoverviewofthestudyoffluidflowinandaroundfaultzonesatshallowdepths(b1km)wheresurfaceandsubsurfacedataismostabundant.Wediscussfaultzonehy-drogeologyasstudiedfromastructuralgeologicalandhydrogeologicalviewpointinSection2.InSection3wediscussthegeologicalprocessesandhydrogeologicalcharacteristicsoffaultzonesderivedfromthestudyofrockoutcrops,inarangeofgeologicalsettings.Section4dis-cussestheconceptualmodelsoffluidflowinfaultzonesasderivedfromoutcropdata.Section5reviewshydrogeologicalevidenceoftheimpactoffaultsinasimilarrangeofgeologicalsettings.Studiesthathaveemployedmodelsasintegrativetoolstodescribefluidflowpat-ternsaroundfaultzonesarediscussedinSection6.Finally,wediscussdifferentstrategiestodevelopamoreprehensiveandintegratedframeworkfortheinvestigationoffluidflowaroundfaultzonesintheshallowcrust(Section7).Throughoutthetextterminologyisboldedwhenitisfirstdefined.
2.Approachestofaultzonehydrogeology
Hydrogeologistsandstructuralgeologistsusedifferentmethodsandapproachestostudyingfaultzonehydrogeology(Fig.1).Explicitlyreviewingthepurpose,datarequired,limitationsandadvantagesofeachindividualtechniqueisbeyondthescopeofthispaperbuthasbeensummarizedinTable1.Hereweprovideanoverviewofthediffer-entapproachesandhowtheseareimpactedbydataavailability,fieldareasandscale.
Surface-focusedstudies,mostlybystructuralgeologists,usetech-niquessuchasoutcropmappingoffaultzoneattributes,forexamplethelength,orientationandapertureoffractureswithinthefaultzone,thefaultrockgrainsizeandporosity,andpermeametrytoobtainthepermeabilityoffaultrocks(Fig.1a).Outcropdatacanbeusedinnumer-icalflowmodelsoffaultzones(Section6).Fromoutcrop-basedstudiesasetofconceptualhydrogeologicalmodelshavebeendevelopedintheliterature(outlinedinSection3.2)thatsuggestthatfaultsactasbarriershamperingfluidmigration,asconduitspropagatingthemovementoffluidsorasmoreplexconduit–barriersystems(Caineetal.,1996;Aydin,2000;Rawlingetal.,2001;BenseandPerson,2006).However,di-recthydrogeologicalevidenceoftheimpactsofparticularfaultsonfluidflowtotestandrefiheseoutcrop-basedfaultmodelsisoftenlacking.
Subsurface-focusedstudies,oftencarriedoutbyhydrogeologists,inferthehydrogeologicalbehavioroffaultzonesfromarraysofbore-holesorspringsusuallywithoutobservingfaultstructuredirectlyinoutcrop(Fig.1b).Oftengroundwaterhydrologistsneedtobeopportun-istsinthestudyoffaultzonesasgroundwatermonitoringworksaredesignedtocharacterizethehydrodynamicsofaquifersasawholewithoutanyspecificfocusonfaultzones.Hence,closelyspacedarraysofboreholesoverfaultzonesarerare.However,theshapeofthehy-
V.F.Benseetal./Earth-ScienceReviews127(2013)171–192173
Fig.1.Investigationoffaultzonehydrogeologyhasoftenfocusedon(a)characterizationofsurfaceoutcropsoftenbystructuralgeologistsor(b)byinvestigationofboreholedataprovidinginformationongeologyanddirecthydrogeologicalevidenceoftheimpactoffaultsonfluidflow.Thesourceoffielddataleadstodifferentconceptualmodels,numericalmodelingassump-tionsandmethods.Table1listsexamplesofstudiesemployingthedifferentmodesofinvestigationandfieldmethodologies.Surfaceinvestigationssometimeshaveamorethree-dimensionalsurfaceexposure(i.e.atminesitesorinmountainoustopography)andsomesub-surfaceinvestigationsincludetunnelsorundergroundmines.
gradientatfaultzonescanbeusedtoinferthedirectionsandrateoffluidflowatthefaultzone(e.g.Haneberg,1995;Benseetal.,2003a;AndersonandBakker,2008)andprovideanindicationofthehydrogeologicalbe-haviorofafaultzoneasabarrieroraconduit(Fig.2a).Groundwatertemperature,geochemistryandage(e.g.,BethkeandJohnson,2008;Lerayetal.,2012)canconstraingroundwaterflowpathsacrossfaultzonesinconjunctionwithhydraulicheadobservations(Fig.2bandc).Boreholescanalsobeusedforhydraulictestingwithpackerorpumpingteststoenhancegroundwaterflowratesaroundfaultzonestoelucidatethefaultzonehydrogeologicalstructure(AndersonandBakker,2008).Samplinggroundwatergeochemistry,measuringhydraulichead,tem-peratureandotherparametersduringpumpingtestscanresultinde-tailedinferencesonfaultzonehydrogeologicalproperties(Roquesetal.,submittedforpublication).
Differencesinthemethodologiesusedbyhydrogeologistsandstruc-turalgeologistsispartlyduetocontrastsinthetypeofdataavailableinfieldareas(Fig.1).Denseworksofwellsavailabletocollectdetailedhydrogeologicalevidenceonfaultbehavioraretypicallyfoundindevel-opedareaswhereoutcropsthatarenecessaryforstructuralgeologicaloutcrop-basedstudiesareusuallysparse.Viceversa,wherefaultzonesarewellexposedinoutcrop,adenseworkofwellsisoftennotavail-ableastheseareasaregenerallylessdevelopedand/orthegroundwaterisnotnearthesurface.Therefore,probablyinpartduetothedifferencesinmethods,dataavailabilityandfieldareas,wefindthatthereislimitedevidenceofanexchangeofinsightsorintegrationbetweenhydrogeol-ogyandstructuralgeologicaldisciplines.
Eachmethodusedbystructuralgeologistsandhydrogeologistshasacharacteristicscaleoverwhichthemethodintegratesobservationsbeingexaminedatvariousscalesbythetwodisciplines.Generally,themethodsusedbystructuralgeologistsexaminesmallerintegrationscalesofb0.01m(microstructure)toe.g.100m(outcropstudies)whereashydrogeologistsoftenalsoinferfaulthydrogeologicalbehavioratlargerintegrationscalesofe.g.N10km.Mostofthemethodsusedbyhydrogeologistsintegrateoverlargerscalesthanthetypicalwidthofmanyfaultcores(Section3),whichsuggeststhathydrogeologicalmethodscanonlyinfertheeffectivehydrogeologicimpactoffaultzonesratherthanconstraintheinternalpermeabilitystructureoffaultzones.Conversely,itmaybedifficulttoelucidatearegionalimpactoffaultsonfluidflowfromthesmallerscalestudiesconductedbystruc-turalgeologists.
3.Faultzoneprocessesfromsurface-focusedstudies3.1.Terminologyandfaultzonearchitecture
Structuralgeologistshavedescribedfaultzonesinoutcropindiversesettings(Fig.4)suchaspoorlylithifiedsedimentaryrock,forexamplebasinfillsedimentsintheGulfofCorinthRiftbasin(Fig.4a;Lovelessetal.,2011),theLowerRhineEmbayment(Benseetal.,2003b),theRioGrandeRiftbasin(Fig.4b;Heynekampetal.,1999;Sigdaetal.,1999;RawlingandGoodwin,2006;CaineandMinor,2009),insouthernItaly(BalsamoandStorti,2010)andAustria(ExnerandGrasemann,2010),andglacialdepositsinDenmark(Kristenseal.,2008).Inlithifiedsedimentaryrocks,theColoradoplateauisaclassicareaofstudywheremanyresearchershavefocusedeffortstodeterminefaulthydraulicproperties(Fig.4c;AntonelliniandAydin,1994,1995;
174V.F.Benseetal./Earth-ScienceReviews127(2013)171–192
Table1
Variousapproachesusedbystructuralgeologistsandhydrogeologiststostudyfaultzonehydrogeology.Method
StructuralgeologyOutcropmapping
Purpose
RequirementsanddataFieldexposures;lithologicandstructuraldataCoresoroutcropsamplesMineralogyandelementalpositionoffaultponentsRocksamples
ments
Datalimitedtonear-surfacecharacteroffaultzonesthatmighthoweverbeexhumedfromdeepercrustallevels
Rocksamplestakenatasmallscalemightnotberepresentativeoflargerscaleprocesses
Literatureexamples
LehnerandPilaar(1997),CaineandForster(1999),Jourdeetal.(2002),andShiptoal.(2006a)
EvansandChester(1995),CaineandMinor(2009),andKoukouvelasandPaoulis(2009)
Mapproductsof
deformationandfaultarchitecture
FaultrockmineralogyExaminewater–rock
interactionsandgeochemistry
studies
Laboratorycoretests
Permeabilitymeasurement
In-situpermeametry(usuallyusingminiair-permeameters)Hydrogeology
DrillingandboreholegeophysicsFlowmetertesting
PermeabilitymeasurementSuitable(fresh,smooth)surfacesinoutcrop
Rocksamplessmallscale,notnecessarilyrepresentativeoflargerscaleaverage
permeability,butprovidedirectmeasurements.Canbeusedtostudypermeabilitydevelopmentwithprogressivestrain
Potentialofmappingspatialdistributionofpermeabilityacrossfaultzonesindetail
Evansetal.(1997),Ogilvieetal.(2001),
Ngwenyaetal.(2003),andFaoroetal.(2009)
AntonelliniandAydin(1994),Sigdaetal.(1999),Rawlingetal.(2001),andBalsamoandStorti(2010)
Pumpingtesting
DirectsubsurfacesamplingandmeasurementofpetrophysicalpropertiesDeterminepermeabilityandstorativityoffaultponentorfracture(s)EffectivepermeabilitymeasurementofaquiferIdentifyflowdiscontinuities
Delineatingoffluidflowpaths
Delineatingfluidflowpaths
Forexample,geophysicalloggingofboreholesand/orinter-boreholetomographyPressureorflowresponsemeasuredinwell
Pressureresponsemeasuredinwellfield
Waterlevelsinwellfield
MappinghydraulicheadgradientsUseofheatto
characterizeflowArtificialandenvironmentaltracers
NumericalmodelingDiscretefractureworkmodelsContinuummodels
Distributionoftemperatureinaquifers
Groundwatergeochemistry
Largerangeoftechniquesavailable.TranslationofMoretti(1998),andEllsworthetal.(2005)geophysicalpropertiestohydrogeologicalpropertiescanbeproblematic
AllowstodirectlymeasurefluidfluxesDavisonandKozak(1988),Martial.
(1990),Hsieh(2000),andLeBneetal.(2006),
ProvideseffectiveaquiferpropertiesbutwithoutShaal.(1995),MarlerandGe(2003),adelineationofflowpathsAndersonandBakker(2008),andMedeiros
etal.(2009)
DirectevidenceofimpactonhydraulicheadbutHaneberg(1995),andBenseandVanBalenwellsneedtobeverycloselyspacedatfaultzones(2004)toresolvegradientinsufficientdetail
DirectevidenceofflowpathsbutflowneedstobeFairleyandHinds(2004),Andersonand
Fairley(2008),Benseetal.(2008),andReadsignificantenoughtodisturbthebackground
etal.(2013)geothermalgradient
Whiteman(1979),Abelial.(1991),Directevidenceoffluidflowbutthe
Gascoyneetal.(1993),RughandBurbeyinterpretationofgeochemicaldatacanbea
(2008),andLerayetal.(2012)challenge
Integratingboreholeand/
oroutcropdata,
parameterestimationIntegratingboreholeand/oroutcropdata,
parameterestimation
3Ddistributionsoffracturecharacteristics,hydraulictests
Effectiveparameters
Oftenonlyfeasibleatlimitedspatialscale(e.g.10sofmeters)andrealisticrepresentationoffracturesrequireslargeamountofdata
Challengeofarealisticinclusionoffaultzonesintothemodelingroutine
Longetal.(1982),CaineandForster(1999),Jourdeetal.(2002),CaineandTomusiak(2003),andSurretteandAllen(2007)
Oda(1986),ForsterandSmith(1989),LopezandSmith(1996),BenseandPerson(2006),andMicarellietal.(2006)
basementfaultsintheRockyMountains(Fig.4d;CaineandTomusiak,2003)andJapan(Jefferiesetal.,2006)havealsobeencloselystudiedfortheirhydraulicproperties.Cementationpatternscausedbyfluidcir-culationalongfaultsforexampleseenonSpitsbergenFault(Fig.4e)haveevenbeensuggestedasanalogoustolinearfeaturesseenonthesurfaceofMars(Fig.4f;Treiman,2008),therebyprovidingindirectev-idenceforpastcirculationofgroundwateronanotherplainoursolarsystem.
Normalfaultsgenerallyourinextensionaltectonicsettings,re-versefaultsinpressionalsettings,andstrike-slipfaultswhereslipishorizontal.Normalandreversefaultstypicallyhaveadipof~45–70°.Therockabovethefaultzoneiscalledthehangingwall,therockbelowthefaultformsthefootwall.Whenreversefaultshavearelative-lyshallowdip(≪45°)theyarereferredtoasthrustfaults.Thereaderisreferredtotextbooksonstructuralgeologyforfurtherdescriptionoffaultzoneclassification(e.g.Fossen,2010).Faultzonepermeabilitystructuresmaybeclassifiedinanumberofways(e.g.Karasakietal.,2008),includingbasedonthetypeofdisplacement(normal,thrust/reverseandstrike-slip).However,hereweclassifytheconceptualmodelsoffaultzonehydrogeologyprimarilybasedonrocktype.Wechoosethisjustificationbecausethestructuralarchitectureoffaults,andtheirresultingpermeabilitystructureandaquiferdevelopment,arestronglycontrolledbyrocktype(Section3.2).
Afirst-orderdescriptionoffaultzonesmonlyincludesafaultfaultcore,asthezoneofthemostintensestrain,isgenerallyfoundinthecenterofthefaultzone,andaommodatesthemajorityofthedis-placementwithinthefaultzone.Thedamagezonehassecondarystruc-turessuchasfractures,andminorfaultsextendingintothefoot-wallandhanging-wall,whichtakeuptheremainderofstrainwithinthefaultzone.Inunlithifiedsediments,inwhichmixingofsedimentscanourinthefaultzone(discussedinSection3.1),anadditionalzone,calledthe‘mixedzone’existsinbetweenthedamagezoneandthefaultcore(Heynekampetal.,1999).However,theuseofamixedzone,asageicterminthecontextoffaultzonearchitecture,inthefielddescriptionoffaultshasledtoconfusion(e.g.,EvansandBradbury,2004)sowedonotusetheterminthispaperbutonlydistin-guishafaultzoneastoconsistofafaultcoreandadamagezone.
IntheFC–DZframeworkameasurablefaultthicknessisdefinedper-pendiculartothefaultstrikewhichisthesumofthefaultcoreanddam-agezohicknesses(Fig.5b).Thethicknessoffaultzonesincreaseswithfaultthrowordisplacement(Knottetal.,1996;Sperreviketal.,2002;Childsetal.,2007).Thistrendisrelativelyconsistentfordifferenttypesoffaults(normal,reverseandstrike-slip)inarangeofrocktypes(Fig.6).However,Evans(1990)andFaulkneretal.(201
